Peaceful Coexistence:

Cellular Systems and Rotating Radar Using the Same Spectrum

Jon M. Peha

ISART 2011

Speaker represents no one but himself.

Thanks to R. Saruthirathanaworakun, CMU Ph.D. student

Beyond "Unused" Spectrum

- Much of the discussion on making more spectrum available has focused on "unused" spectrum
 - Easier to do
 - But limited, possibly insufficient in the long term
 - For many kinds of systems, more sharing is possible
- In case of radar, radar systems may not operate over entire U.S. in given band
 - Should the rest be "exclusion zones"?
- Can we share "used" spectrum: frequency bands and geographic areas where radar systems also operate?

Radar and LTE

- Radar in fixed location, rotates at constant rate
 - Antenna gain to a given LTE device changes over time
 - LTE max power adjusted to keep radar INR below threshold
- LTE system
 - Capacity in shared spectrum varies with LTE max power, and interference from radar
 - Scenario: When cell capacity from dedicated spectrum is exceeded, traffic overflows into shared spectrum.

Some Assumptions

- Cellular system knows about radar, e.g. transmit power, rotation time, tolerable interference.
- Shared spectrum at 2.8 GHz. Bandwidth = 3 MHz
- ITU-R P.1546 and COST 231 Walfisch-Ikegami path loss models, urban area, flat terrain
- Tolerable radar INR = -10dB
- Radar transmit power = 0.45 MW
- Antenna is a uniformly-distributed aperture type with elevation, azimuthal 3-dB beamwidth, and front-to-back ratio = 4.7°, 1.4°, and 38 dB, respectively
- Gain of the radar's main beam = 33.5 dBi,
- LTE cell radius = 0.8 km.
 - LTE uses 2 by 2 MIMO in both directions

LTE data rate vs. Distance to Radar

High mean data rate close to radar, although with interruptions. More efficient in downstream than upstream.

What About Data Rate Fluctuations?

- Perceived data rate fluctuates over time as antenna rotates.
- Approaches mean rate for large files, but not for small.
 - For file size in the MBs, worst-case QOS is close to average.
 - For file size in the kBs, worst-case QOS much worse than average
- Our analysis shows that sharing is
 - Great for video streaming
 - Great for P2P file sharing
 - Very good for web browsing
 - Very bad for VOIP
 - So sharing supports the dominant applications.

Implications and Issues

- Spectrum shared with radar can be very useful for LTE
 - For video, P2P, large file xfer, web browsing. NOT VOIP.
- But systems become interdependent
- Secondary system requires knowledge of primary.
 - Requires more coordination than is typical.
 - Upgrading primary requires secondary to change or move.
- Greater risk of harmful interference.
 - Greater challenges for precertification
 - Must be possible to terminate secondary operation quickly
- Requires appropriate policy and governance
 - Either primary user or trusted third party must have ability and authority to address interference risks.
 - DoD/FAA? Band manager? FCC? NTIA?

References

J. M. Peha, "Cellular Systems and Rotating Radar Using the Same Spectrum," *ISART*, 2011.

R. Saruthirathanaworakun, J. M. Peha, and L. M. Correia, "Opportunistic Primary-Secondary Spectrum Sharing with a Rotating Radar," 2011.

J. M. Peha, "Sharing Spectrum through Spectrum Policy Reform and Cognitive Radio," *Proceedings* of the IEEE, April 2009.